建議:家長可以考慮為孩子報名參加奧數班,尤其是在孩子表現出一定的學習意愿時。3.如果孩子對數學不感興趣,或者校內數學成績不佳優勢:如果孩子對數學不感興趣,奧數班可能會增加孩子的學習壓力,不利于其***發展。建議:家長應該更多地關注孩子的興趣和個性發展,而不是強迫孩子參加不適合的奧數班。4.對于即將面臨小升初的孩子優勢:奧數成績在小升初中有一定的參考價值,尤其是在一些重點學校。建議:如果孩子在校內數學成績***,可以考慮參加奧數班,以增加競爭力;如果孩子對奧數不感興趣,家長應該尊重孩子的意愿。奧數思維課通過角色扮演模擬數學家探究過程。曲周厲老師數學思維
37. 數學歸納法證明斐波那契不等式 證明F(n) < 2?對所有n≥1成立。基例:F(1)=1<21,F(2)=1<22。假設F(k)<2?對k≤n成立,則F(n+1)=F(n)+F(n-1)<2?+2??1=3×2??1<2??1(因3<4)。歸納完成。通過強化假設處理遞推關系,此技巧在算法復雜度分析中至關重要,廣大的家長們和廣大的同學們可以共同探討一下,數學思維還是很有魅力的。38. 線性規劃的圖解法實戰 工廠生產A、B兩種產品,A耗材4kg、工時2h,利潤6千;B耗材2kg、工時4h,利潤8千。現有材料200kg,時間300h。設產量x?、x?,目標函數6x?+8x?大化,約束4x?+2x?≤200,2x?+4x?≤300,x?,x?≥0。作圖得頂點(0,75)利潤600千,(50,50)利潤700千,(66.7,0)利潤400千,故優等解為生產50單位A和50單位B。智能化數學思維規定容斥原理解決奧數中的多重條件計數難題。
學奧數的好方法在這里!
目前奧數的學習主要方式有:一是報班,二是家長自己輔導。**普遍的方式還是報班,通常是老師把一類題目解題知識點詳細講解,再總結一些“技巧”傳授給學生。聽懂了的孩子慢慢有了成就感,家長也滿意孩子有進步。沒有聽懂的孩子就歸結于孩子不適合學奧數,或者難度不適合等。奧數很有趣,但困難就是應用場景變化多。當孩子在**解決新場景的時候,就會發現題目非常熟悉,題目要考查的知識點也非常清楚,但就是無法用所學的方法解決問題。這時家長就會覺得孩子天生不善于舉一反三,見的題型不夠多等原因,開始增加刷題量,讓孩子反復見題型以達到效果。但真是這樣的嗎?這樣真的好嗎?
21. 圖論基礎之七橋問題 哥尼斯堡七橋問題要求找到一條經過每座橋只有一次的路徑。歐拉將其抽象為圖論模型,節點表示陸地,邊表示橋。通過分析節點度數發現:當且當圖中所有節點度數為偶數(歐拉回路)或恰有2個奇數度數節點(歐拉路徑)時,問題有解。原問題中四個節點均為奇數度,故無解。延伸至現代交通規劃,分析地鐵線路圖的連通性,培養抽象建模能力。22. 分數分拆的埃及式解法 將5/6分解為不同單位分數之和,利用貪心算法:選比較大單位分數1/2,剩余5/6-1/2=1/3;繼續分解1/3=1/4+1/12不滿足,調整為1/3=1/6+1/6(重復無效),后邊得5/6=1/2+1/3。嚴格證明需利用斐波那契算法:任意真分數可表示為有限個不同單位分數之和。此類問題在計算機算法設計與歷史數學研究中均有重要地位。新加坡奧數教材以生活場景設計題目,如地鐵換乘比較優路徑規劃。
35. 分形幾何之科赫雪花生成 從正三角形開始,每邊三等分后中段替換為凸起的小三角。迭代三次后,周長變為原長的(4/3)3≈2.37倍,面積收斂于初始的1.6倍。通過幾何畫板動態演示,理解“無限周長包圍有限面積”的悖論。分形維度計算(log4/log3≈1.26)揭示復雜自然形態(海岸線、云層)的數學本質。36. 黃金分割的生物學印證 向日葵種子排列遵循斐波那契數列(1,1,2,3,5,…),每新種子旋轉137.5°(黃金角≈360°×(1-φ),φ≈0.618)。此角度確保種子均勻分布且無重疊,數學模型驗證優等填充效率。類似規律見于松果鱗片與菠蘿紋理,體現數學法則在進化中的普適性,啟發優等包裝算法設計。分形幾何圖案展現奧數與藝術的美學共鳴。雞澤數學思維導圖六年級上
逆向思維法在雞兔同籠問題中展現獨特解題魅力。曲周厲老師數學思維
孩子小學階段時間相對較多,能通過大量刷題,達到“熟能生巧”,“見多識廣”的目的。但初高中這種方法并不太適用了。出現以上問題,不是孩子不會舉一反三,而是沒有掌握解題的底層邏輯。一味的去追求速度,追求學了多少內容,刷了多少題,不愿意多對題目進行思考分析,就想套用模型解題,而不追求知識本質。這樣的學習是低效的,不能遷移的,對后面中學學習也是毫無益處的。家長應該不能只著眼當下,更應放大格局。學好奧數的方法—:“慢”在多年的奧數教學中,筆者發現**理想的奧數教學模式,應當是比較“慢”的。老師引導孩子去探索,學生自己嘗試,在不停的試錯過程中,引導學生思考,給予學生評價,讓學生總結出自己的分析題目,找到突破口的方法,增強學生的自信。為什么學奧數要“慢”?當老師遇到一道陌生的題型,首先運用的不是技巧,而是去分析、嘗試、驗證。整個解題過程也并不是那么的流暢。實力強悍的老師亦是需要分析嘗試,更何況學生呢?老師還要預設如何引導學生這樣去分析,嘗試,做到哪種程度,才意識到方法不可取,又重新嘗試......找到正確的方法,再優化方法。像這樣嘗試、分析、驗證的能力是學***重要的品質,能夠終身受用。 曲周厲老師數學思維